

ATAI Advanced Technique of Artificial Intalligance

Effective Token Graph Modeling using a Novel Labeling Strategy for Structured Sentiment Analysis

Wenxuan Shi, Fei Li, Jingye Li, Hao Fei, Donghong Ji[†]

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China { shiwenxuan, lifei_csnlp, theodorelee, hao.fei, dhji}@whu.edu.cn

2022.06.8 • ChongQing

2022 ACL

mtettigence

NATURAL LANGUAGE PROCESSING

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

- The label proportions for span prediction and span relation prediction are imbalanced.
- The span lengths of sentiment tuple components may be very large in this task, which will further exacerbates the imbalance problem.
- Two nodes in a dependency graph cannot have multiple arcs, therefore some overlapped sentiment tuples cannot be recognized.

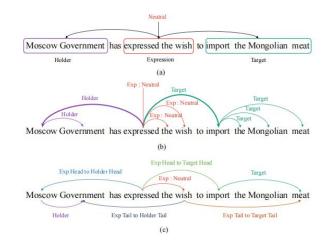


Figure 1: (a) An example of structured sentiment analysis. (b) The head-first parsing graph proposed by Barnes et al. (2021), where the arcs related to holder(target)-expression linking relations are bold. (c) Our proposed essential label set, which has more balanced label distribution for holder, target or expression span prediction and their linking relation prediction.

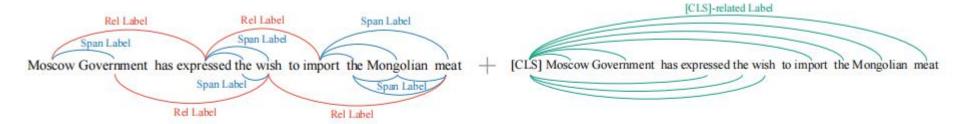


Figure 2: The whole label set contains the labels for span prediction and span relation prediction, as well as the [CLS]-related labels that connect a sentinel [CLS] token with the holder, target and expression tokens.

Method

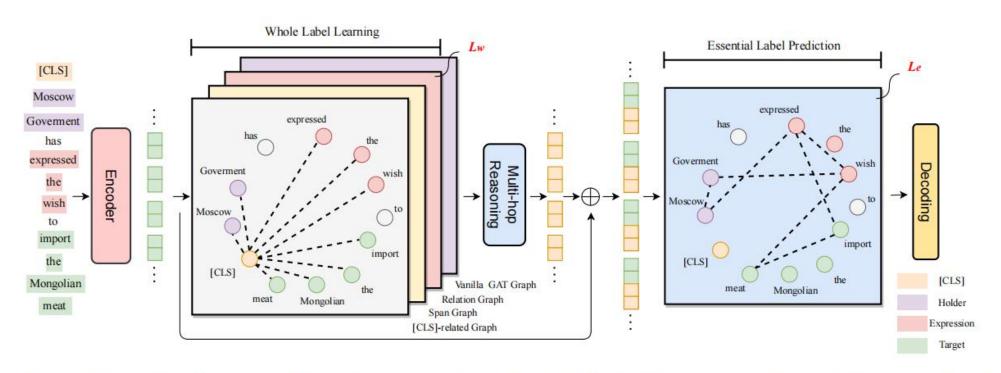
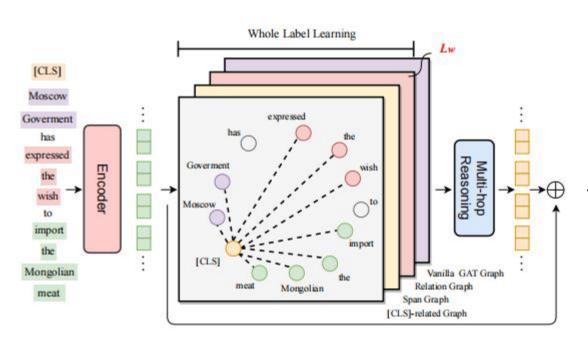


Figure 3: Overall architecture of the our framework. From left to right, the first is an encoder to yield contextualized word representations from input sentences, and the next is a graph layer where we produce attention scoring matrices by whole label prediction. Then we build a multi-hop reasoning layer and refine token representations. Finally, a prediction layer is leveraged for reasoning the relations in essential labels and based on which we decode all components of an opinion tuple.

Method

Encoder Layer



$$\mathbf{w}_i = \mathbf{e}_i^{word} \oplus \mathbf{e}_i^{pos} \oplus \mathbf{e}_i^{lemma} \oplus \mathbf{e}_i^{char} \quad (1)$$

$$h_i = \text{BiLSTM}(w_i)$$
 (2)

$$\mathbf{G} = \left(\mathbf{V}, S_o^{\mathcal{G}}, S_s^{\mathcal{G}}, S_r^{\mathcal{G}}, S_c^{\mathcal{G}}\right) \tag{3}$$

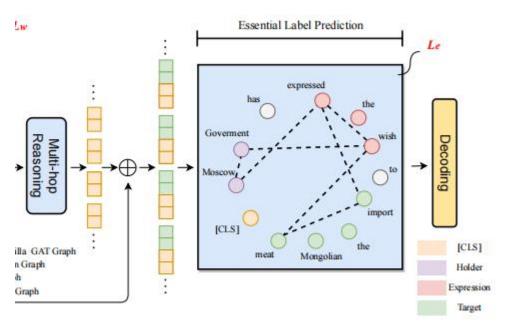
Attention Scoring

$$q_{v,i}, k_{v,j} = MLP_v^q(\mathbf{h}_i), MLP_v^k(\mathbf{h}_j)$$
 (4)

$$S_{v,ij}^{\mathcal{G}} = (q_{v,i})^{\top} \mathbf{R}_{j-i} k_{v,j}$$
 (5)

$$\mathcal{S}^{\mathcal{G}} = \left\{ S_{v,ij}^{\mathcal{G}} | v \in \{o, s, r, c\}, 1 \le i, j \le n \right\} \tag{6}$$

Method



(13)

$$\mathcal{L}_{w} = \sum_{i} \sum_{j>i} \log \left(e^{TH_{ij}^{\mathcal{G}}} + \sum_{r \in \Omega_{ij}^{neg}} e^{S_{r,ij}^{\mathcal{G}}} \right)$$
$$+ \sum_{i} \sum_{j>i} \log \left(e^{-TH_{ij}^{\mathcal{G}}} + \sum_{r \in \Omega_{ij}^{pos}} e^{-S_{r,ij}^{\mathcal{G}}} \right)$$
(12)

 $\mathcal{L}_{all} = \mathcal{L}_e + \alpha \mathcal{L}_w$

Multi-hop Reasoning

$$A_{v} = Softmax\left(S_{v}^{\mathcal{G}}\right), v \in \{o, s, r, c\}$$
 (7)

$$\boldsymbol{u}_{i}^{l+1} = \sigma \left(\frac{1}{N} \sum_{v} \sum_{j \in \mathcal{N}_{i}^{v}} A_{v,ij} \boldsymbol{W}_{l}^{v} \boldsymbol{u}_{j}^{l} \right)$$
(8)

$$c_i = h_i \oplus u_i$$

$$\mathcal{S}^{\mathcal{P}} = \{ S_r^{\mathcal{P}} | r \in \mathcal{R}_e \} \tag{9}$$

Adaptive Thresholding

$$TH_{ij}^{\mathcal{P}} = (q_i^{TH})^{\top} \mathbf{R}_{j-i} \mathbf{k}_j^{TH}$$

$$TH^{\mathcal{P}} = \{TH_{ij}^{\mathcal{P}} | 1 \le i, j \le n\}$$
(10)

$$q_i^{TH} = \boldsymbol{W}_q \boldsymbol{h}_i + \boldsymbol{b}_q, k_j^{TH} = \boldsymbol{W}_k \boldsymbol{h}_j + \boldsymbol{b}_k,$$

$$\Omega_{ij} = \left\{ r | S_{r,ij}^{\mathcal{P}} > TH_{ij}^{\mathcal{P}}, r \in \mathcal{R}_e \right\}$$
 (11)

Experiments

Dataset	Model	Span				Targeted	Sent. Graph	
		Holder F1	Target F1	Exp. F1	Overall F1	F1	NSF1	SF1
NoReC _{Fine}	RACL-BERT	5.11	47.2	56.3	-	30.3	107	173
	Head-first	51.1	50.1	54.4	53.1*	30.5	37.0	29.5
	Head-final	60.4	54.8	55.5	55.7*	31.9	39.2	31.2
	TGLS	60.9	53.2	61.0	58.1	38.1	46.4	37.6
MultiB _{EU}	RACL-BERT	=	59.9	72.6	-	56.8	-	-
	Head-first	60.4	64.0	73.9	69.6*	57.8	58.0	54.7
	Head-final	60.5	64.0	72.1	68.2*	56.9	58.0	54.7
	TGLS	62.8	65.6	75.2	71.0	60.9	61.1	58.9
MultiB _{CA}	RACL-BERT	-	67.5	70.3		52.4	-	-
	Head-first	43.0	72.5	71.1	70.5*	55.0	62.0	56.8
	Head-final	37.1	71.2	67.1	70.2*	53.9	59.7	53.7
	TGLS	47.4	73.8	71.8	71.6	60.6	64.2	59.8
MPQA	RACL-BERT	-	20.0	31.2	¥	17.8	-	-
	Head-first	43.8	51.0	48.1	47.7*	33.5	24.5	17.4
	Head-final	46.3	49.5	46.0	47.2*	18.6	26.1	18.8
	TGLS	44.1	51.7	47.8	47.0	23.3	28.2	21.6
DS _{Unis}	RACL-BERT	-	44.6	38.2	=	27.3	-	-
	Head-first	28.0	39.9	40.3	40.1*	26.7	31.0	25.0
	Head-final	37.4	42.1	45.5	43.0*	29.6	34.3	26.5
	TGLS	43.7	49.0	42.6	45.7	31.6	36.1	31.1

Table 2: Main experimental results of our TGLS model and comparison with previous works. The score marked as bold means the best performance among all the methods. The baseline results with "*" are from our reimplementation, the others are from (Barnes et al., 2021).

Experiments

	Span Overall F1	Targeted F1	SFI
Ours(TGLS)	58.1	38.1	37.6
w/o [CLS]-related graph	57.6	36.9	36.1
w/o span graph	57.2	38.1	37.4
w/o relation graph	57.7	38.0	36.1
w/o vanilla GAT graph	57.8	37.6	36.5
w/o RoPE	57.7	36.4	36.8
w/o adaptive thresholding	56.0	36.3	35.2

Table 3: Experimental results of ablation studies.

NoReC _{Fine}	MultiB _{EU}	MultiB _{CA}	MPQA	DS _{Unis}
52.3	63.9	67.3	45.0	41.5
54.2	65.4	67.5	44.7	43.2
57.8	68.7	70.1	46.1	45.7
	52.3	52.3 63.9 54.2 65.4	52.3 63.9 67.3 54.2 65.4 67.5	52.3 63.9 67.3 45.0 54.2 65.4 67.5 44.7

Table 4: Experimental results of the relation extraction F1 score, where *parsing labels* denote the dependency-parsing-based labels in head-final setting, *our labels* denote the whole and essential labels.

Experiments

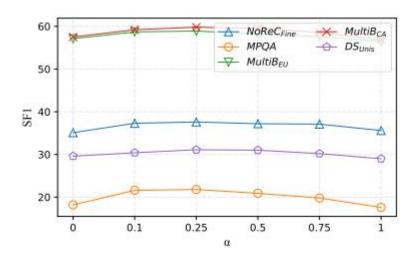


Figure 4: Experimental results (SF1 score) using different α to control the impact of the whole label prediction.

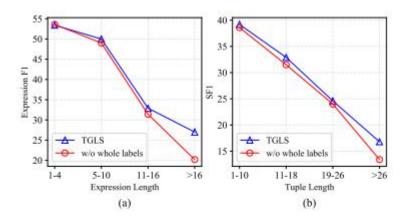


Figure 5: Analysis on the effect of the whole label set for long span identification. (a) Expression F1 scores regarding to different expression lengths. (b) SF1 scores regarding to different tuple lengths.

Thank you!

