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The span lengths of sentiment tuple components may be s
very large in this task, which will further exacerbates the P N
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. : Figure 1: (a) An example of structured sentiment analy-
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. expression linking relations are bold. (¢) Our proposed
essential label set, which has more balanced label dis-
be recognized.

tribution for holder, target or expression span prediction
and their linking relation prediction.

[CLS]-related Label

Rel Label Rel Label Span Label e — —— o
... . bt L e
~Span Label -~ Span Label s e ——————————— U

~ _ _ o
Moscow Government has expressed the wish mlmmnﬁﬁf Mongolian meat - [CLS] Moscow Government tu:sexpremedthe wish toimport the Mongolian meat

2 : = B g
\‘\_ Span [.J.ELV\ W E"ﬁ—___:_——_ - f"'ﬁj
-\-\-\--\__— — o e —_—I_- e ——
Rel Lahel Rel Label

Figure 2: The whole label set contains the labels for span prediction and span relation prediction, as well as the
[CLS] -related labels that connect a sentinel [CLS] token with the holder, target and expression tokens.
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Figure 3: Overall architecture of the our framework. From left to right, the first is an encoder to yield contextualized
word representations from input sentences, and the next is a graph layer where we produce attention scoring matrices
by whole label prediction. Then we build a multi-hop reasoning layer and refine token representations. Finally,
a prediction layer is leveraged for reasoning the relations in essential labels and based on which we decode all
components of an opinion tuple.
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AR Model Span Targeted Sent. Graph
Holder F1 TargetFl1 Exp.Fl Overall Fl F1 NSF1 SF1
RACL-BERT - 472 56.3 - 30.3 - -
. Head-first 51.1 50.1 54.4 53.1* 30.5 370 295
OR€LFine  Head-final 60.4 548 55.5 55.7* 3.9 392 312
TGLS 60.9 532 61.0 58.1 381 464 37.6
RACL-BERT - 599 72.6 i 56.8 5 3
o Head-first 60.4 64.0 73.9 69.6* 578 580 547
WHUPEU  Head-final 60.5 64.0 72.1 682" 569 580 547
TGLS 628 65.6 75.2 71.0 609  61.1 589
RACL-BERT x 675 70.3 - 52.4 < .
— Head-first 430 725 71.1 70.5* 550 620 568
wiBcA  Head-final 37.1 712 67.1 70.2* 539 597 537
TGLS 474 738 71.8 71.6 60.6 642 59.8
RACL-BERT y 20.0 31.2 < 17.8 - -
MPOQA Head-first 438 51.0 48.1 47.7* 335 245 174
Head-final 463 495 46.0 472 186 261 1838
TGLS 44.1 517 47.8 47.0 233 282 216
RACL-BERT - 446 38.2 - 27.3 - i
— Head-first 28.0 39.9 40.3 40.1* 26.7 310 250
Unis Head-final 37.4 42.1 45.5 43.0* 296 343 265
TGLS 437 49.0 426 457 3.6 361 311

Table 2: Main experimental results of our TGLS model and comparison with previous works. The score marked as
bold means the best performance among all the methods. The baseline results with "*" are from our reimplementation,
the others are from (Barnes et al., 2021).
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Span Overall F1  Targeted F1  SF1

Ours(TGLS) 58.1 38.1 37.6
" wio [CLS]-related graph 5176 36.9 361
wio span graph 57.2 38.1 374
wio relation graph 57.7 38.0 36.1
wio vanilla GAT graph 57.8 37.6 365
" wlRePE T 577 7 364 368
w/o adaptive thresholding 56.0 36.3 35.2

Table 3: Experimental results of ablation studies.
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NoReCp,. MuliBgy MultiBey, MPQA DSy

Head-final 523 63.9 67.3 450 415

TGLSmodel T TTTTTTToTTTTTTTmTmTAY
+parsing labels 542 65.4 67.5 447 432
+our labels 578 68.7 70.1 461 457

Table 4: Experimental results of the relation extraction
F1 score, where parsing labels denote the dependency-
parsing-based labels in head-final setting, our labels
denote the whole and essential labels.
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